4,512 research outputs found

    Bifurcations in valveless pumping techniques from a coupled fluid-structure-electrophysiology model in heart development

    Get PDF
    We explore an embryonic heart model that couples electrophysiology and muscle-force generation to flow induced using a 2D2D fluid-structure interaction framework based on the immersed boundary method. The propagation of action potentials are coupled to muscular contraction and hence the overall pumping dynamics. In comparison to previous models, the electro-dynamical model does not use prescribed motion to initiate the pumping motion, but rather the pumping dynamics are fully coupled to an underlying electrophysiology model, governed by the FitzHugh-Nagumo equations. Perturbing the diffusion parameter in the FitzHugh-Nagumo model leads to a bifurcation in dynamics of action potential propagation. This bifurcation is able to capture a spectrum of different pumping regimes, with dynamic suction pumping and peristaltic-like pumping at the extremes. We find that more bulk flow is produced within the realm of peristaltic-like pumping.Comment: 11 pages, 13 figures. arXiv admin note: text overlap with arXiv:1610.0342

    Reynolds number limits for jet propulsion: A numerical study of simplified jellyfish

    Get PDF
    The Scallop Theorem states that reciprocal methods of locomotion, such as jet propulsion or paddling, will not work in Stokes flow (Reynolds number = 0). In nature the effective limit of jet propulsion is still in the range where inertial forces are significant. It appears that almost all animals that use jet propulsion swim at Reynolds numbers (Re) of about 5 or more. Juvenile squid and octopods hatch from the egg already swimming in this inertial regime. The limitations of jet propulsion at intermediate Re is explored here using the immersed boundary method to solve the two-dimensional Navier Stokes equations coupled to the motion of a simplified jellyfish. The contraction and expansion kinematics are prescribed, but the forward and backward swimming motions of the idealized jellyfish are emergent properties determined by the resulting fluid dynamics. Simulations are performed for both an oblate bell shape using a paddling mode of swimming and a prolate bell shape using jet propulsion. Average forward velocities and work put into the system are calculated for Reynolds numbers between 1 and 320. The results show that forward velocities rapidly decay with decreasing Re for all bell shapes when Re < 10. Similarly, the work required to generate the pulsing motion increases significantly for Re < 10. When compared actual organisms, the swimming velocities and vortex separation patterns for the model prolate agree with those observed in Nemopsis bachei. The forward swimming velocities of the model oblate jellyfish after two pulse cycles are comparable to those reported for Aurelia aurita, but discrepancies are observed in the vortex dynamics between when the 2D model oblate jellyfish and the organism

    Pulsing corals: A story of scale and mixing

    Get PDF
    Effective methods of fluid transport vary across scale. A commonly used dimensionless number for quantifying the effective scale of fluid transport is the Reynolds number, Re, which gives the ratio of inertial to viscous forces. What may work well for one Re regime may not produce significant flows for another. These differences in scale have implications for many organisms, ranging from the mechanics of how organisms move through their fluid environment to how hearts pump at various stages in development. Some organisms, such as soft pulsing corals, actively contract their tentacles to generate mixing currents that enhance photosynthesis. Their unique morphology and intermediate scale where both viscous and inertial forces are significant make them a unique model organism for understanding fluid mixing. In this paper, 3D fluid-structure interaction simulations of a pulsing soft coral are used to quantify fluid transport and fluid mixing across a wide range of Re. The results show that net transport is negligible for Re<10Re<10, and continuous upward flow is produced for Re≥10Re\geq 10.Comment: 8 pages, 8 figure

    Flow Structure and Transport Characteristics of Feeding and Exchange Currents Generated by Upside-Down Cassiopea Jellyfish

    Get PDF
    Quantifying the flows generated by the pulsations of jellyfish bells is crucial for understanding the mechanics and efficiency of their swimming and feeding. Recent experimental and theoretical work has focused on the dynamics of vortices in the wakes of swimming jellyfish with relatively simple oral arms and tentacles. The significance of bell pulsations for generating feeding currents through elaborate oral arms and the consequences for particle capture are not as well understood. To isolate the generation of feeding currents from swimming, the pulsing kinematics and fluid flow around the benthic jellyfish Cassiopea spp. were investigated using a combination of videography, digital particle image velocimetry and direct numerical simulation. During the rapid contraction phase of the bell, fluid is pulled into a starting vortex ring that translates through the oral arms with peak velocities that can be of the order of 10 cm s–1. Strong shear flows are also generated across the top of the oral arms throughout the entire pulse cycle. A coherent train of vortex rings is not observed, unlike in the case of swimming oblate medusae such as Aurelia aurita. The phase-averaged flow generated by bell pulsations is similar to a vertical jet, with induced flow velocities averaged over the cycle of the order of 1–10 mm s–1. This introduces a strong near-horizontal entrainment of the fluid along the substrate and towards the oral arms. Continual flow along the substrate towards the jellyfish is reproduced by numerical simulations that model the oral arms as a porous Brinkman layer of finite thickness. This two-dimensional numerical model does not, however, capture the far-field flow above the medusa, suggesting that either the three-dimensionality or the complex structure of the oral arms helps to direct flow towards the central axis and up and away from the animal

    Three-dimensional low Reynolds number flows near biological filtering and protective layers

    Full text link
    Mesoscale filtering and protective layers are replete throughout the natural world. Within the body, arrays of extracellular proteins, microvilli, and cilia can act as both protective layers and mechanosensors. For example, blood flow profiles through the endothelial surface layer determine the amount of shear stress felt by the endothelial cells and may alter the rates at which molecules enter and exit the cells. Characterizing the flow profiles through such layers is therefore critical towards understanding the function of such arrays in cell signaling and molecular filtering. External filtering layers are also important to many animals and plants. Trichomes (the hairs or fine outgrowths on plants) can drastically alter both the average wind speed and profile near the leaf's surface, affecting the rates of nutrient and heat exchange. In this paper, dynamically scaled physical models are used to study the flow profiles outside of arrays of cylinders that represent such filtering and protective layers. In addition, numerical simulations using the Immersed Boundary Method are used to resolve the 3D flows within the layers. The experimental and computational results are compared to analytical results obtained by modeling the layer as a homogeneous porous medium with free flow above the layer. The experimental results show that the bulk flow is well described by simple analytical models. The numerical results show that the spatially averaged flow within the layer is well described by the Brinkman model. The numerical results also demonstrate that the flow can be highly 3D with fluid moving into and out of the layer. These effects are not described by the Brinkman model and may be significant for biologically relevant volume fractions. The results of this paper can be used to understand how variations in density and height of such structures can alter shear stresses and bulk flows.Comment: 28 pages, 10 figure

    The Role of the Pericardium in the Valveless, Tubular Heart of the Tunicate, \u3cem\u3eCiona savignyi\u3c/em\u3e

    Get PDF
    Tunicates, small invertebrates within the phylum Chordata, possess a robust tubular heart which pumps blood through their open circulatory systems without the use of valves. This heart consists of two major components: the tubular myocardium, a flexible layer of myocardial cells that actively contracts to drive fluid down the length of the tube; and the pericardium, a stiff, outer layer of cells that surrounds the myocardium and creates a fluid-filled space between the myocardium and the pericardium. We investigated the role of the pericardium through in vivo manipulations on tunicate hearts and computational simulations of the myocardium and pericardium using the immersed boundary method. Experimental manipulations reveal that damage to the pericardium results in aneurysm-like bulging of the myocardium and major reductions in the net blood flow and percentage closure of the heart\u27s lumen during contraction. In addition, varying the pericardium-to-myocardium (PM) diameter ratio by increasing damage severity was positively correlated with peak dye flow in the heart. Computational simulations mirror the results of varying the PM ratio experimentally. Reducing the stiffness of the myocardium in the simulations reduced mean blood flow only for simulations without a pericardium. These results indicate that the pericardium has the ability to functionally increase the stiffness of the myocardium and limit myocardial aneurysms. The pericardium\u27s function is likely to enhance flow through the highly resistive circulatory system by acting as a support structure in the absence of connective tissue within the myocardium

    Large Amplitude, Short Wave Peristalsis and Its Implications for Transport

    Get PDF
    Valveless, tubular pumps are widespread in the animal kingdom, but the mechanism by which these pumps generate fluid flow is often in dispute. Where the pumping mechanism of many organs was once described as peristalsis, other mechanisms, such as dynamic suction pumping, have been suggested as possible alternative mechanisms. Peristalsis is often evaluated using criteria established in a technical definition for mechanical pumps, but this definition is based on a small-amplitude, long-wave approximation which biological pumps often violate. In this study, we use a direct numerical simulation of large-amplitude, short-wave peristalsis to investigate the relationships between fluid flow, compression frequency, compression wave speed, and tube occlusion. We also explore how the flows produced differ from the criteria outlined in the technical definition of peristalsis. We find that many of the technical criteria are violated by our model: Fluid flow speeds produced by peristalsis are greater than the speeds of the compression wave; fluid flow is pulsatile; and flow speed have a nonlinear relationship with compression frequency when compression wave speed is held constant. We suggest that the technical definition is inappropriate for evaluating peristalsis as a pumping mechanism for biological pumps because they too frequently violate the assumptions inherent in these criteria. Instead, we recommend that a simpler, more inclusive definition be used for assessing peristalsis as a pumping mechanism based on the presence of non-stationary compression sites that propagate unidirectionally along a tube without the need for a structurally fixed flow direction

    Finding Latino/a Voices in the Storytelling Process: Preservice Teachers Tell Their Stories in Digital Narratives

    Get PDF
    Preservice teachers in a bilingual education teacher preparation program created digital narratives that told their cultural stories within a sociocultural framework. The study revealed that the creation of digital stories within a sociocultural framework allowed preservice teachers to better understand their cultural heritages and unique places in society. This process allowed the preservice teachers to share their voices with audiences that they may have never considered before. Their newfound voices gave them the confidence to share with others about their identity and created a sense of belonging in their worlds in which they lived
    • …
    corecore